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A b s t r a c t. During exploitation, motor vehicles are subjected to vibration loads that lead to fatigue of their 

users and materials of their aggregates. Therefore, vibrations must be studied from the earliest stage of development, 

using mathematical models, experiments, or their combinations. In theoretical studies, vibrations of concentrated 

masses are usually observed, although, with the development of numerical methods (especially finite element method), 

attention is paid to vibrations of elastic vehicle systems. Then, idealizations are usually made, especially regarding 

operational conditions and relationships between motor vehicle aggregates. In this paper, an attempt was made to de-

velop a method for identifying real vibration loads of elastic vehicle cardan shafts under operational conditions. 

Namely, 2D Fourier transformation was used for two-parameter frequency analysis. The possibility of the procedure's 

application was demonstrated on an idealized elastic cardan shaft. The research showed that two-parameter frequency 

analysis can be used to generate torsional vibrations of elastic vehicle cardan shafts in laboratory conditions. 
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ПРИЛОГ КОН ИСТРАЖУВАЊЕ НА МОЖНОСТА ЗА КОРИСТЕЊЕ АНАЛИЗА  

НА ФРЕКВЕНЦИЈАТА СО ДВА ПАРАМЕТРА ЗА ЕКСПЕРИМЕНТАЛНА  

ИДЕНТИФИКАЦИЈА НА ПАРАМЕТРИТЕ НА ВРТЕЖНИОТ МОМЕНТ  

НА КАРДАНСКИТЕ ОСКИ НА ВОЗИЛОТО 

А п с т р а к т. За време на експлоатацијата, моторните возила се подложени на вибрациони оптоварувања 

што доведуваат до замор на материјалите на нивните агрегати. Затоа вибрациите мора да се проучуваат уште 

од најраната фаза на развој, користејќи математички модели, експерименти или нивни комбинации. Во теорет-

ските студии обично се разгледуваат вибрации на концентрирани маси, иако, со развојот на нумеричките ме-

тоди (особено методот на конечни елементи), им се посветува внимание и на вибрациите на еластичните 

системи на возилата. Потоа обично се прават идеализации, особено во однос на условите за работа и односите 

меѓу агрегатите на моторните возила. Во овој труд беше направен обид да се развие метод за идентификување 

на реалните вибрациони оптоварувања на еластичните кардански вратила на возилото при работни услови. 

Имено, за анализа на фреквенцијата со два параметра се користеше 2D Фуриеова трансформација. Можноста 

за примена на постапката беше демонстрирана на идеализирана еластична осовина. Истражувањето покажа 

дека анализата на фреквенцијата со два параметра може да се користи за да се генерираат торзиони вибрации 

на еластичните вратила на возилото во лабораториски услови. 

Клучни зборови: возило; еластично вратило; торзиони вибрации; анализа на фреквенција со два параметра 

1. INTRODUCTION 

During exploitation, motor vehicles are sub-

jected to vibration loads that lead to fatigue of their 

users and materials of their aggregates. Therefore, 

vibrations must be studied from the earliest stage of 

development, using mathematical models, experi-

ments, or their combinations.  

In theoretical studies, vibrations of concen-

trated masses are usually observed, although, with 
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the development of numerical methods (especially 

finite element method), attention is paid to vibra-

tions of elastic vehicle systems. Then, idealizations 

are usually made, especially regarding operational 

conditions and relationships between vehicle aggre-

gates [1]. 

The specificity of vehicle operational condi-

tions is their random character [1], which signifi-

cantly complicates theoretical considerations using 

models, so experiments are practical and irreplace-

able. Namely, despite significant progress in devel-

oping software for automatic vehicle design and cal-

culation [4], the final judgment on their characteris-

tics is based on experimental research. Therefore, 

experimental methods are still significant today.  

When it comes to elastic vehicle cardan shafts 

subjected to torsional vibrations, a problem often 

arises in identifying the parameters of these vibra-

tions. Methods for identifying them are developed, 

as is the case with modal analysis [5–10]. In practi-

cal terms, vibration modes are determined in labor-

atory conditions. However, a problem arises in the 

case when actual exploitation conditions are neces-

sary to generate the torsional loads of the cardan 

shaft on test benches, as the modal analysis does not 

provide sufficient opportunities for generating these 

signals in the time domain.  

Therefore, it was deemed useful to develop a 

procedure for identifying the parameters of tor-

sional vibrations of elastic vehicle cardan shafts, 

which would enable their generation in laboratory 

conditions.  

One possibility is frequency analysis using the 

Fourier transform, which enables the determination 

of the frequency content of signals by calculating 

the spectra magnitudes and phase angles [11, 12], 

that allow the generation of an original, time-de-

pendent signal using the inverse Fourier transform, 

which is routinely performed in cases where the sig-

nal depends only on time [11].  

However, vibrations of elastic systems depend 

on multiple parameters (dimensions and time), sug-

gesting that a multi-parameter Fourier transform 

must be used. In the case of an idealized cardan 

shaft (with other types of vibration ignored), tor-

sional vibrations change along the length of the 

shaft and depend on time, so the so-called two-pa-

rameter Fourier transformation (2D) must be ap-

plied [13, 14]. 

This paper will analyze the possibility of using 

a two-parameter Fourier transform to create condi-

tions for studying vibrations of elastic vehicle car-

dan shafts in laboratory conditions. 

Therefore, a general expression for the Fourier 

transform in case of multiple variables will be given 

[15]:  

𝐹(𝜉1, 𝜉2 … . 𝜉𝑛) = ∫ 𝑒 − 2𝜋𝑖(𝑥1𝜁1
𝑅𝑛

+  𝑥2𝜁2 + 

+ ⋯ 𝑥𝑛𝜁𝑛) ∗ 𝑓(𝑥1, 𝑥2 … . 𝑥𝑛)𝑑𝑥1𝑑𝑥2 ∗∗∗∗ 𝑑𝑥𝑛 (1) 

where:  

𝑓(𝑥1, 𝑥2. . . . 𝑥𝑛) – a function of n variables,  

𝑥1, 𝑥2, . . . . 𝑥𝑛     – variables,  

𝜉1, 𝜉2. . . . . . 𝜉𝑛  – circular frequency, and  

∫ – multiple integrals (double for 2D, triple for 3D, etc. )
𝑅𝑛

. 

2. METHOD 

As previously mentioned, this paper aims to 

investigate the possibility of using two-parameter 

frequency analysis (2D Fourier transformation) in 

identifying parameters of torsional vibrations of 

elastic vehicle cardan shafts. In the absence of ex-

perimental data on registered torsional vibrations of 

the shaft, the method is illustrated with data ob-

tained from a dynamic simulation using its mathe-

matical model. As is known, vibrations of elastic el-

ements are described by partial differential equa-

tions [13,14]. For further consideration, Figure 1 

will be observed.  

 
Fig. 1. The concept of transmission (1 a),  

partial scheme of cardan shaft (1 b),  

and  cardan shaft model (1c) 
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Figure 1 shows the concept of transmission of 

the observed commercial motor vehicle (1a). Given 

that this transmission concept is widely applied in 

practice, it has been deemed appropriate not to give 

any further explanations. The cardan shaft is in-

tended to transmit the torque from the gearbox to the 

drive axle in cases where their axes do not overlap, 

as illustrated in Figure (1b). A simplified model of 

an elastic cardan shaft is shown in Figure (1c).  

When defining the model to describe the tor-

sional vibrations of the elastic cardan shaft, the fol-

lowing assumptions were made:  

– the influence of its mass on the occurrence of 

transverse vibrations was neglected,  

– the shaft was cylindrical (tube) with a 

constant outer and inner diameter along its length,  

– the shaft was completely dynamically bal-

anced and the influence of clearance in the joints 

was neglected, but friction losses in the joints of the 

shaft were included.  

Given that the partial differential equations 

that describe torsion vibrations of elastic bodies, 

which also applies to the cardan shaft, is described 

in detail in [13, 14], it will not be done here, but its 

final form will be given. Given the assumptions 

made, forced torsional vibrations of the elastic car-

dan shaft [13,14] are described by the partial differ-

ential equation:  

 
𝜕2𝑢

𝜕𝑡2 = 𝑐2 𝜕2𝑢

𝜕𝑥2 + 𝑓(𝑥, 𝑡),  (2) 

where:  

u (x, t) – torsional vibrations of the cardan shaft,  

x          – coordinate along the length of the shaft,  

f (x, t)    – forced torque originating from unbalanced 

motor forces and the random character of 

micro-roughness,  

t           – time, and  

𝑐2 =
𝐺

𝜌
 , 

where: 

G – shear modulus, and 

ρ – density of the shaft material.  

As is known [13,14,16], to find the general in-

tegral of the partial differential equation (2), it is 

necessary to know the boundary and initial condi-

tions. As is known, the torsional torque caused by 

vibrations of the cardan shaft can be expressed [13, 

14, 16]:  

 𝑀 = 𝐺𝐼0
𝜕𝑢(𝑥,𝑡)

𝜕𝑥
. (3) 

where:  

I0  – a polar moment of inertia given by the ex-

pression for a circular ring cross-section:  

𝐼0 =
𝜋(𝑅4 − 𝑟4)

2
 

where:  

R – outer, and  

r – inner radius of the cardan shaft tube.  

The left boundary condition of the cardan shaft 

is defined by the equality of the output torque from 

the gearbox and the torsional torque transferred to 

it. The right boundary condition of the cardan shaft 

is defined by the equality of the torque that needs to 

be brought to the drive axle and the torsional torque 

of the shaft.  

For further consideration, Figure 1b will be ob-

served.  

Without delving into the theory of spherical 

motion of the universal joint, which is extensively 

explained in [17, 18], the vector of the angular ve-

locity of the output shaft of the gearbox is projected 

onto the axis of the cardan shaft, and the following 

relationship applies:  

𝜔𝑐 = 𝜔1 cos( 𝛾) 

where   is the angle of the universal joint.  

The opposite situation occurs at the right end, 

where the following relationship can be written for 

the angular velocity of the input shaft of the drive 

shaft:  

𝜔𝑐 = 𝜔2 cos( 𝛾), 

where 2  the angular velocity of the drive shaft.  

To define the boundary conditions, it is neces-

sary to calculate the output torque from the gearbox 

and the input torque to the drive axle. Based on the 

power equality that is transmitted from the gearbox 

to the left cross joint of the cardan shaft, we have:  

 𝑀1𝜔1 = 𝑀𝑐𝜔𝑐 = 𝑀𝑐𝜔1 cos( 𝛾). (4) 

The same can be written for the right cross 

joint of the cardan shaft (where the influence of fric-

tion is included in the joints of the cardan shaft via 

the efficiency factor c ):  

 𝑀𝑐𝜔𝑐𝜂𝑐 = 𝑀2𝜔2 = 𝑀2
𝜔𝑐

cos(𝛾)
. (5) 

where M2 is the input torque to the drive axle.  
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The torque M2 will be calculated from the trac-

tion balance during slow uniform motion of the ob-

served commercial motor vehicle on a road with a 

longitudinal slope defined by the longitudinal angle 

 . Given the conditions of the observed vehicle 

motion, the required moment on the input shaft of 

the drive axle M2 is defined by the expression [19]:  

 𝑀2 =
𝑚𝑔(𝑓 cos 𝛼+sin 𝛼)𝑟𝑑

𝑖0𝜂0
. (6) 

where: 

m  – the mass of the vehicle,  

g   – the acceleration due to gravity,  

  – the longitudinal slope angle,  

f    – the coefficient of rolling resistance,  

i0   – the gear reduction in the drive shaft,  

0 – the efficiency of the drive axle.  

Based on expressions (3), (4), and (6), the 

boundary condition for the left end of the cardan 

shaft is obtained:  

 
∂𝑢(𝑥,𝑡)

∂𝑥
=

1

𝐺𝐼0

𝑀1

cos(𝛾)
, (7) 

while based on expressions (3), (5), and (6), the 

boundary condition for the right end of the cardan 

shaft can be written:  

 
∂𝑢(𝑥,𝑡)

∂𝑥
=

1

𝐺𝐼0

𝑀2

𝜂𝑐 cos(𝛾)
. (8) 

For the left end of the shaft, x = 0 should be 

placed, and for the right end, x = L (where L is the 

length of the cardan shaft).  

The following initial conditions were assumed 

for the dynamic simulation:  

 𝑢(𝑥, 𝑡) = 0;     
∂𝑢(𝑥,𝑡)

∂𝑡
= 0 (9) 

for t = 0.  

It was deemed appropriate to use a forced 

torque (excitation function) in partial differential 

equation (2) that takes into account the imbalance of 

the engine's torque or the random nature of the lon-

gitudinal micro-roughness of the road.  

More precisely, in the absence of real data, it 

was assumed that the engine torque changes with 

twice the frequency of the number of revolutions 

(the so-called second harmonic), and that the effect 

of longitudinal road roughness can be represented 

by a random function [19], i.e.:  

𝑓(𝑥, 𝑡) = 𝑎𝑚 sin( 4𝜋𝑛𝑡) 

𝑓(𝑥, 𝑡) = 𝑎𝑚[(𝑟𝑛𝑑 − 0.5) + sin( 4𝜋𝑛𝑡)] 

where:  

am – amplitude,  

rnd – random numbers uniformly distributed 

in the interval 0,1,  

n – number of engine revolutions, and  

t – time.  

The partial differential equation (2), with 

boundary and initial conditions (7), (8), and (9), can 

be solved only in the case of harmonic excitation 

[13, 14], so an attempt was made to solve it using 

the Wolfram Mathematica 13.2 program [15]. How-

ever, difficulties arose with listing numerical data, 

so it was decided to solve the problem numerically 

[20], using the finite difference method. As this pro-

cedure is known from [20], it will not be discussed 

here, and the problem was solved using a developed 

program in Pascal.  

The dynamic simulation was performed for a 

steel elastic cardan shaft, using the following data: 

m = 22000 kg; i0 = 7.85; iI = 6.87; rd = 520 mm; 

0  = 0.90; c = 1; G = 8·104 N/mm2;  = 8·10–6 

kg/mm3; R = 125 mm, r = 100 mm; nx = 256; hx = 

5 mm; nt = 256; ht = 0.01 s; am = 20 Nm;  = 6 o.  

As torsional vibrations of the elastic cardan 

shaft depend on two parameters, 3D graphics are re-

quired to represent them graphically. For illustra-

tion, the results of the numerical integration of the 

partial differential equation (2) are shown for the 

used boundary and initial conditions in Figures 2 

and 3. 

 
Fig. 2. Torsional vibrations of the cardan shaft for the forced 

torque f(x, t) = am·sin(2nt)  



Contribution on investigating the possibility of using two-parameter frequency analysis in experimental parameter identification … 79 

Маш. инж. науч. спис. 41 (2) 75–81 (2023) 

 
Fig. 3. Torsional vibrations of the cardan  shaft for the forced 

torque f (x,t) = am[sin(2nt) + (rnd–0.5)] 

In Figure 2, harmonic waves along the length 

of the shaft can be observed due to the unbalanced 

second harmonic of the motor, which is following 

the theoretical solutions from [13, 14].  

Figure 3 shows the simultaneous effect of the 

unbalanced engine torque and road microroughness 

on the torsional vibrations of the elastic cardan 

shaft, but in this case, randomly-shaped waves ap-

pear.  

Since the torsional vibrations of the elastic car-

dan shaft depend on two parameters (displacement 

x and time t), it is necessary to apply 2D Fourier 

transformation. To implement it, the author devel-

oped software in Pascal. However, considering the 

available commercial software on the market, it was 

deemed appropriate to use Origin 8.5 [21] in further 

analyses, as potential users will have easier access 

to that software.  

Using the mentioned software, the spectra 

magnitudes and phases of the two-parameter Fou-

rier transformation were calculated, and, for illus-

tration purposes, the results are shown in Figures 4–

7.  

 
Fig. 4. The module spectrum of torsional vibrations  

of the cardan shaft for the forced torque  

f (x,t) = am*sin(2nt) 

 
Fig. 5. The phase angle of torsional vibrations of the cardan 

shaft for the forced torque f (x,t) = am*sin(2nt) 

 

Fig. 6. The module spectrum of torsional vibrations  

of the cardan shaft for the forced torque  

f (x,t) = am[sin(2nt) + (rnd–0.5)] 

 
Fig. 7. The phase angle of torsional vibrations of the cardan 

shaft for the forced torque  

f (x,t) = am[sin(2nt) + (rnd–0.5)] 
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3. DATA ANALYSIS  

Based on the data analysis shown in images 4-

7, it can be concluded that the spectra magnitude 

modules and phase angles describe the wave char-

acter of torsional vibrations of the elastic propeller 

shaft, which is consistent with the theoretical solu-

tions from [13, 14].  

The waves are more clearly visible in cases of 

harmonic disturbance of the form am·sin(2nt), while 

in the case of using a disturbance function 

am[sin(2nt) + (rnd – 0.5)], the waves are random, as 

expected.  

Based on previous analyses, it can be claimed 

that 2D Fourier transformation reliably enables data 

analysis of torsional vibrations of the elastic cardan 

shaft, which can have practical applications, as the 

inverse Fourier transformation enables laboratory 

generation of identical vibrations in operational 

conditions [22]. The inverse Fourier transformation 

can be realized using the aforementioned software 

Origin 8.5 [21].  

During operational testing, it is necessary to 

register torsional vibration parameters of the elastic 

cardan shaft (stress, angular displacement, speed, or 

acceleration) along its length, over longer periods. 

Minimum and maximum frequency values depend 

on the length of the shaft, i.e. length of the time sig-

nal and discretization step.  

First, it is necessary to adopt the maximum in-

teresting frequencies fxmax and ftmax, then the set-

ting step of the transducer and sampling of the time 

signal is defined based on the equation (Nyquist fre-

quency) [11]: 

ℎ𝑥  = 
1

2𝑓𝑥𝑚𝑎𝑥
      ℎ𝑡  = 

1

2𝑓𝑡𝑚𝑎𝑥
. 

The minimum interesting frequency is deter-

mined based on the length of the shaft (L = nx·hx) 

or the length of the time signal (T = nt·ht), according 

to the expressions:  

 𝑓𝑥𝑚𝑖𝑛
=

1

𝐿
        𝑓𝑡𝑚𝑖𝑛

 

It should be noted that there are no explicit pro-

cedures for calculating spectral analysis errors for 

two-parameter Fourier transforms, unlike in the 

case of one-dimensional Fourier transforms [11]. 

Taking this into account, as well as the fact that this 

paper aims to illustrate the possibilities of applying 

two-parameter frequency analysis in the study of 

torsional vibrations of elastic cardan shafts in vehi-

cles, analysis of statistical errors was not performed 

in detail.  

The developed procedure has created condi-

tions for analysis of the influence of the integration 

step on the accuracy and stability of partial differ-

ential equation (2) solutions, the influence of design 

parameters on torsional vibrations of elastic cardan 

shafts, the influence of forced torques, and so on. 

However, considering that the results of dynamic 

simulation in this paper served as a replacement for 

missing experimental results, it was evaluated that a 

more detailed analysis is not necessary. 

4. CONCLUSION 

Based on the conducted research, it can be 

stated that the two-parameter Fourier transform re-

liably enables the analysis of experimental data on 

torsional vibrations of elastic cardan shafts.  

The calculated spectra magnitudes and phase 

angles, with the application of inverse 2D Fourier, 

transform, enable the generation of identical vibra-

tions in the laboratory as well as in exploitation con-

ditions.  
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